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A new pr inc ip le  of min imum ent ropy product ion is fo rmula ted  based on the analys is  of p rev ious  
resu l t s .  

The pr inc ip le  of min imum ent ropy product ion can be formula ted  (and has  until now been formulated)  as  
the Pr igogine  t heo rem [1, 2]: a s ta t ionary  s ta te  of a the rmodynamic  s y s t e m  is a s ta te  of the min imum poss ib le  
ent ropy product ion under  specif ied conditions. 

The Pr igogine  t heo rem has,  however ,  only been proved  for  s ta tes  close to equi l ibr ium when the study 
of product ion is low and when phenomenological  t r a n s f e r  laws with constant  coefficients  as well  as the Onsager  
r ec ip roc i ty  re la t ions  can be applied [1-3]. If ,  however ,  i t  is a quest ion of the pr inc ip le  of min imum ent ropy 
product ion,  then it is  suggested that  the proposi t ion  fo rmula ted  above be used when consider ing a nonequil ib-  
r ium s ta t ionary  s ta te  of a the rmodynamic  s y s t e m  with finite product ion of entropy.  One should a lso  bea r  in 
mind that the assumpt ions  made in this p rob l em admi t  at l ea s t  two feas ib le  s ta t ionary  s t a t e s ,  one of which one 
has  to be se lec ted ,  s ince in actual  fact  only one s ta t ionary  state can be observed .  

Examples  of s ta t ionary  s ta tes  in the rmodynamic  s y s t e m s  which differ  essen t ia l ly  f r o m  the equi l ibr ium 
ones though they a r e  c h a r a c t e r i s t i c  fo r  the i r  min imum poss ib le  ent ropy product ion a r e  given in the second 
p a r t  of [4] and in [5]. P r a c t i c a l  exper ience  of using the pr inciple  of the min imum entropy product ion is a l so  
at  one ' s  d isposal :  I ts  use helps to explain the exis tence  of the c r i t i ca l  s ta te  in the opera t ion  of a gas e jec to r  
[6]; conditions can be found for  v ib ra to ry  heat  in a tube which is accompanied  by longitudinal acoust ic  v i b r a -  
t ions [7] and for  turbulent  Schmidt number s  de te rmined  in a submerged  i so the rma l  je t  [8]. 

Since the use of the pr inciple  of m i n i m u m entropy product ion may  a lso  p rove  advantageous in our future 
cons idera t ions ,  it is advisable  to d i scuss  the cases  known to us f r o m  the l i t e r a tu re  for  which this pr inciple  
is invalid. In the p r e s en t  a r t i c le  two such cases  a re  d iscussed:  1) the product ion of entropy in a s y s t e m  of 
gas - f i l l ed  v e s s e l s  joined by a capi l la ry  tube and with different  t e m p e r a t u r e s ;  2) the en t ropy product ion in a 
l aye r  of heat -conduct ing  m a t t e r  between two heat  r e s e r v o i r s .  I t  is our  a im he re  to show that the val idi ty or  
invalidity of the pr inciple  of the min imum product ion of ent ropy for  both these  cases  depends on how the 
concept  of a feas ib le  s t a t ionary  s tate  of a the rmodynamic  s y s t e m  is i n t e rp re t ed ,  and that the formulat ion of 
the min imum product ion of en t ropy is needed to improve  accuracy .  

The f i r s t  of these  cases  was analyzed in [4], where  the probabi l i ty  of fil l ing the ene rgy  leve ls  li and m i 
by molecu les  was introduced; under  some assumpt ions  it was  p roved  by the methods of s ta t i s t i ca l  mechanics  
that the ent ropy product ion in the v e s s e l  s y s t e m  is not m i n i m u m  in the region of the values  l i and m i r e la ted  
by 

(l~ -F rni) = 1. (1) 
i 

In the above-c i ted  a r t i c le  the probabi l i t i es  of fil l ing li and m i a r e  unders tood to be the ra t ios  

l i = n~AIN, m ,  = n iB /N ,  

where  niA and niB are  the numbers  of mo lecu le s  in the r e spec t ive  v e s s e l s  (A and B) with energy  ei ,  N being 
the total  number  of molecules .  

Since the methods employed in [4] a r e  those of s ta t i s t i ca l  mechan ics ,  the obtained r e su l t  indicates  that 
the pr inciple  of hea t -en t ropy  production is invalid if the feas ib le  s ta t ionary  s ta tes  of the s y s t e m  under con-  
s idera t ion  a r e  unders tood to be the s ta tes  cha r ac t e r i z ed  by any fi l l ing probabi l i t i es  l i and m i r e la ted  by the 

T rans l a t ed  f r o m  Inzhenerno-F iz iches ld i  Zhurnal ,  Vol. 35, No. 3, pp. 531-539, Sep tember ,  1978. Or ig i -  
nal a r t i c l e  submit ted  F e b r u a r y  22, 1977. 

1 1 1 4  0022-0841/78/3503-1114507.50 �9 1979 Plenum Publishing Corpora t ion  



/7 B 

Fig. 1. Hemispher ica l  vesse ls  
with orif ice in the common wall. 

relation (1). However,  the situation changes completely if these states are  understood to be only the s tat ion-  
ary  states sat isfying the conditions of the problem and if there is only one and not severa l  such states.  Such 
a situation indeed takes place for the sys tem under consideration: For  a stabilized p rocess  the exchange of 
molecules between the vesse l s  and the assumptions for the filling probabili t ies li and mi adopted in [4] prove 
to be uniquely determined.  

To prove that the set of values li and m i is unique, one considers  a sys tem consist ing of two hemispher i -  
cal vesse ls  A and B with a small  orif ice C at the center of the common wall (Fig. 1). I t  is assumed that there 
are  N molecules  of a s ingle-a tom gas in the vesse ls .  Moreover ,  it is also assumed as in [4], that the t e m p e r a -  
tures  T A and T B of the vesse l  walls are  maintained by heat  r e s e r v o i r s  A* and B* and that the molecules  in the 
vesse ls  in teract  only with the vesse l  walls and are  in thermal  equil ibrium with the r e se rvo i r s  A* and B*. 

The hemispher ica l  vesse l s  are  considered in the present  ar t ic le  solely to simplify our analysis.  It wili 
be seen f rom our  fur ther  considerat ions that the shape of the vesse ls  had no effect on the final conclusions. 
The replacement  of the capi l lary tube by an orifice was dictated by the fact  that the energy of the molecules 
pass ing through the capil lary tube cannot remain  constant. (Since the effusion admit tances of a capil lary tube 
and of orif ice can be made equal [9], this replacement  is of no significance either.) Finally,  the analysis of 
the monatomic gas resul ts  f rom our  wish to remain  within the f r amework  of the c lass ic  (not quantized) descrip~ 
tion of the molecular  energy.  

Adopting the hypothesis of molecular  chaos (detailed balance), one can wri te  that the total number of 
molecules  in the vesse l s  A and B equal to the given number N can be wri t ten as 

nAV + N A + nBV + N B --=- N, (2) 

where nA and nB are  the numbers  of molecules  per  unit volume which remain  in thermal  equilibrium with the 
r e s e r v o i r s  A* and B*, respect ively;  V is the volume of each of the vesse ls  A and B; NA and N B are the num-  
bers  of molecules  in the vesse l s  A and B which, having passed through the orif ice C, do not reach the walls 
of the vesse ls .  

A necessa ry  condition for  state s tat ionari ty in the sys tem under consideration is that the numbers  of 
molecules  pass ing through the orif ice C per  unit of time f rom the vesse l  A to B and f rom the vesse l  B to A 
be equal: 

--~--nA'UAS C = + nBuBS c. 

In the above condition SC is the area of the orif ice C and ~A and fib a re  the mean velocit ies of the molecules  
which are  in thermal  equil ibrium with the r e s e r v o i r s  A* and B*: 

where k is  the Boltzmaun constant and m is the mass  of a molecule for the gas under consideration. In view 
of the la t ter ,  the stat ionari ty condition for  the sys tem under considerat ion implies that 

nAV ----nBv% (4) 
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Fig. 2. Heat -conduct ing l aye r .  

If  i t  is a s sumed  that the radius  of the or i f ice  C is ve ry  much l e s s  than the radius  R of the ve s se l s  A and B, 
then it  is not difficult to e x p r e s s  NA by nB and N B by hA: 

N A = - - ~ % S c R  , N B --_ + n A S c R .  (5) 

To this end one mus t  employ two re la t ions ,  one of which is suff iciently well  known (see,  for  example ,  [10]), 
the other  being se l f -ev iden t :  

[ m '~3/2 / mu2 

% = Rlu.  

In these  re la t ions ,  dN is  the number  of molecu les  which with t e m p e r a t u r e  T and the veloci ty  ranging f r o m  u to 
u + du pass  through the or i f ice  C in the e l e m e n t a r y  solid angle sin~dqd0 (see Fig. 1); T u is the t ime during 
which which each of the molecu les  pass ing  through the or i f ice  C r eaches  the walls  of the v e s s e l s  A and B; n = 
n A i f T = T A ,  b u t n = n B i f T = T  B. 

To avoid any misunders tand ing ,  i t  is again s ta ted that  the exp res s ions  (3) and (6) a re  valid if the ve loc i -  
t ies  of the molecu les  pas s ing  through the or i f ice  C a r e  d is t r ibuted according  to the M a x w e l l - B o l t z m a n n  law, 

F = n (m/2~kT)  3/2 exp ( - -  mu2/2kT). 

The Maxwe l l -Bo l t zmarm law is ,  in turn ,  valid for  an ideal gas if the l a t t e r  is  in t he rma l  equi l ibr ium with a 
heat  r e s e r v o i r  [11]. This  equi l ibr ium flow f r o m  the ve s se l  A to the ve s se l  ]3 and back with the r e s e r v o i r s  
A* and ]3*, r e spec t ive ly ,  was adopted in [4] as well  as in the p r e sen t  work.  

The re la t ions  (2), (4), and (5) uniquely de t e rmine  nA, nit,  NA, and N B in t e r m s  of the given quanti t ies  
N, T A, T]3, SC, and It .  In pa r t i cu l a r ,  the following exp re s s ion  is valid for  hA: 

n A =  N R ~, 1 ~R  2 ~, - -4-Sc  . (7) 

The values  of n A and n]3 together  with the M a x w e U - B o l t z m a n n  dis tr ibut ion law uniquely de te rmine  the filling 
probabi l i t i es  li and mi  in t e r m s  of the ve loc i t ies  u (or the energ ies  e = mu2/2) as well  as  the ent ropy p roduc -  
tion P in the s y s t e m  under  considerat ion:  

P = PA* -]- PB* = 3 ]/T k a/~ nA 
4 ] / ~ - ~  Sc V-T--A TB (TA - -  TB) 2. (8) 

The quanti t ies  ~A and ~B in this exp res s ion  denote the ent ropy product ions in the r e s e r v o i r s  A* and B*, the 
quantity n A being given by the e x p r e s s i o n  (7). 

To der ive  (8) one has ,  f i r s t  of al l ,  to bea r  in mind that accord ing  to the definition [1, 2] the production 
of ent ropy in a t he rmodynamic  s y s t e m  is the growth of ent ropy per  unit of t ime  in the the rmodynamic  s y s t e m  
itself .  Moreove r ,  one has to de te rmine  the ene rg ie s  U (+) and U(-) ,  which together  with the molecu les  a re  
brought to the ve s s e l s  A and B in unit t ime  and, converse ly ,  a r e  taken away f r o m  the v e s s e l s .  Final ly ,  one 
has to take into considera t ion  that  the d i f fe rences  U (+) - U ( - )  mus t  be compensa ted  by diss ipat ion or  supply of 
hea t  in the r e s e r v o i r s  A and B, since the s ta tes  of gas in the v e s s e l s  and B a re  s ta t ionary .  Then PA* = 
(U(A+)-U(~))/T A, e tc .  

Thus ,  the r e su l t s  der ived  in the f i r s t  p a r t  of [4] can be in te rp re ted  in a di f ferent  way than was actual ly  
done in [4]. Namely ,  i t  can be a s s e r t e d  that  in the case  under  considera t ion  the pr inc ip le  of min imum entropy 
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Fig. 3. Supersonic flow past  a 
wedge. 

production is invalid as an express ion  of some global p roper ty  of the thermodynamic sys tem,  including, in 
par t icu la r ,  the condition of the sys tem Stationarity and the law of mass  conservation. However,  in the case 
under considerat ion this does not imply that the principle of minimum entropy production is invalid, provided 
all s tat ionary states f rom which the state of minimum entropy production is selected are  feasible:  In the case 
analyzed in [4], such a state is unique. 

The analysis  of the case of entropy production in a layer  of mat ter  through which heat  is conducted f rom 
one heat r e s e r v o i r  to another lead to a s imi lar  conclusion. This is now considered in more  detail than is usu-  
ally the case ,  since one can also find it descr ibed in student handbooks. (For example,  in the Bazarov hand-  
book [12], the following can be found: "The principle of the minimum entropy production is only valid if the 
kinetic coefficients are  constant and satisfy the Onsager  relat ions.  If the lat ter  are  not sat isf ied,  the s tat ion-  
ary  state is real ized without the minimum production of entropy. Thus,  tempera ture  distribution in the p r o -  
cess of heat propagation in a layer  between heat sources  with tempera tures  T 1 and T 2 which corresponds  to 
the minimum entropy production is not s tat ionary if the heat-conduction coefficient for the layer  is k = const /  
T 3),,. 

Thus, a flat layer of solid matter of thickness 6 (Fig. 2), on whose one side the temperature (for x = 0) is 
considered remains equal to T 1 while on whose other side (for x = 5) -T 2 > T I. 

The density of the heat flux q (that is, the heat flux per unit time through a unit area of isothermal sur- 
face) at the layer section x in this case -kdT/dx, is in agreement with the Fourier law, where k is the coeffi- 
cient of heat conduction of the substance which is assumed below to depend on temperature only. 

One observes that in some cases the relation k = const/T 3 is adopted only to simplify our discussion. In 
fact, the relation k(T) in a not too wide range of T is nearly linear for solid matter [13]:/% =/%011 + b(T-To)], 
where /%0 is the heat-conduction coefficient of the substance under consideration at the temperature T O . 

In addition, we shall give an expression for/%(T) which is essential in future considerations and which 
follows from the linear thermodynamics of irreversible processes. For isotropic matter this relation is 
given by (see, for example, [i]) 

= Lqq/T 2, (9) 

where Lqq is the scalar kinetic coefficient in the phenomenological law of heat transfer. 

An expression for entropy production in a heat-conducting layer can be obtained by considering an ele- 
mentary sublayer dx in it (see Fig. 2) and by imagining that on the top of this sublayer there is a heat reser- 
voir with temperature T and on the bottom a heat reservoir with temperature T + dT. For a steady heat 
transfer, when q(x) = const the entropy of the upper reservoir per unit area wiU grow by -q/T in unit time. 
The difference between these quantities gives, of course, the entropy production per unit area of the sublayer 
-q/(T + dT): 

( q q ) q dr  dx. (1o, 
dP ~ -- T T @ dT T ~ dx 

By replacing q with -/%dT/dx in the obtained express ion and by integrating with respec t  to x f rom 0 to q,  the 
express ion is obtained for entropy production P per  unit area of the layer :  

5 

dx. 
--~-~. dx ] 

0 
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Fig .  4.  Shock polar  and feasible values 
of v2x and V2y. 

A ne c e s sa ry  ex t remal i ty  condition of the quantity P is that of E u l e r - L a g r a n g e :  

OT dx O (dT/dx) T z 

Hence,  the function T(x) corresponding to the ex t r ema l  P must  sat isfy the equation 

dx z + 2~. dT  T dx ] = 

On the other  hand, the state s ta t ionari ty  of a heat-conduct ing layer  consist ing of the quantity q r ema in -  
ing constant fo r  all x can be wri t ten  as 

0. (12) dq . . . .  ~, _ _ _  = 

ax dx 2 a T  ~, dx ] 

If one compares  Eqs. ( n )  and (12), one finds that the above relat ions a re  identi t ies in the case when 

1 d~ 1 1 d~ 
2~ dT  T ~. dT  

In this case ,  ~ = const/T 2, which, as implied by (9), is a n e c e s s a r y  condition for  the Pr igogine  ~ e o r e m  to 
be valid for  a heat-conduct ing l aye r  if the kinetic coefficient  Lqq remains  constant. In the general  case ,  how- 
e v e r ,  if X r const/T 2, the equations under consiOeration a re  different.  This is considered as proof  that the 
pr inciple  of minimum production of entropy is i n ~ l i d  in a heat-conduct ing layer .  

T h e r e  i s ,  however ,  another c i rcumstance  which is of no less  importance.  Already when der iving the 
express ion  (10), which implies  Eq. (11), the quantity q was regarded  as independent of x (see the de t e rmina -  
tion of the entropy change in the r s s e r v o i r s  with t empera tu re s  T and T + dT). In other  words ,  the express ion  
(10) and Eq. (11) a re  formal ly  valid only ff T(x) is given by Eq. (12): 

y e x p ( y  I.~, dTd~" d T )  d T = c ' ( x + c 2 ) "  

For  a given correspondence  between X and T and given boundary conditions, this dependence is unique. In 
pa r t i cu la r ,  X = eons t /T  a and the previous ly  formula ted  boundary conditions, one has 

T =  T~ 6 ~ 2 x . TtT~ 

The uniqueness of T(x) leads to the s ta t ionary  state  of the thermodynamic  sys tem also being unique (the same 
being correspondingly  t rue  for  the express ion  of entropy production in this state).  In pa r t i cu la r ,  in the case 
in quest ion one has 

consf (7"2 - -  T,)(T~ - -  T~) 
p _ _ _ ~  - -  

3 3 26 T, T2 

Thus ,  the analysis  of the d iscussed  cases  shows that the condition for the pr inciple  of minimum entropy 
production to be valid is the condition that there  exis t  at leas t  two s ta t ionary s ta tes  of the thermodynamic  s y s -  
tem. 
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In the above-discussed  cases  the s tat ionary states were determined by the boundary conditions, the 
transit ion laws, and the conservat ion laws. In the general  case these states can be additionally determined 
by the second law of thermodynamics .  

In all these cases the feasible s tat ionary states must  be stable with respec t  to small  perturbat ions.  

One should mention here  that the condition of severa l  feasible s tat ionary states may at f i r s t  appear to 
occur  ra re ly .  In actual fact ,  however ,  this condition is valid in the case of very  simple thermodynamic sys -  
tems,  not to mention sys tems  with the so-cal led  internal degrees  of f reedom. 

To i l lustrate the above, a supersonic  flow is considered past  a wedge formed by two infinite planes,  each 
making an angle c0 with the direct ion of the oncoming flow of an ideal gas (Fig. 3). It is known that in such a 
flow, two planar shock waves f rom the apex of the wedge, which form equal angles e with the direction of the 
incoming flow, result .  In these waves the entropy of a unit gas mass  is changed by a quantity As. The 
production of entropy,  however ,  per  unit area for the incoming flow mounts to z.XsM, where M is the mass  
flux of gas in the incoming flow. In view of the continuity of the flows of mass ,  energy,  and momentum,  one 
finds (see, for  example,  [14]) that independently of the angle r the component velocit ies of the flow down- 
s t r eam the of shock waves V2x and V2y (the coordinate sys tem is shown in Fig. 3) satisfy the following relation 
r e fe r r ed  to as the shock polar :  

2 C �9 2 2 2 

In the above relat ion,  T is the rat io of gas heat capacities at constant p ressu re  and at constant volume; vt is 
the velocity of the incoming flow, and c,  is the cr i t ical  velocity of the incoming flow. 

The values of V2x and V2y corresponding to the angle r are the coordinates of the intersect ion points of the 
shock-wave curve shown in Fig. 4 with the s t ra ight  lines V2y = ~tan~0V~x. On each side of the axis V2x there are  
three such points. 

Thus,  the boundary conditions and conservat ion laws admit  in the case under considerat ion three feas i -  
ble s tat ionary states of the sys tem corresponding to the values of V2x and V2y at the points I, II ,  and Ill (see 
Fig. 4). In fact ,  however ,  one knows that f rom these feasible states only the state II is rea l ized,  which, s imi -  
lar ly  to the state I, is stable with respec t  to infinitely small  perturbations [14]. 

For  a fur ther  i l lustrat ion the following is also added. It can be shown that 

AS I > ASlI > 0, ASll I ~ 0. (13) 

Consequently, according to the second law of thermodynamics ,  one should re ject  the state HI, and according 
to the principle of minimum entropy production one should select  f rom the states I and II a state n ,  since in 
accordance with the definition of P and the f i r s t  inequality (13) one has PI > PII. 

In view of the shown applicability condition for the principle of minimum entropy production,  it is ,  of 
course ,  expedient to modify its formulation so as to avoid all discussion as regards  the meaning of a feasible 
s tat ionary state of a thermodynamic  system.  This modification can be as follows: F rom all the stable s t a -  
t ionary states of a thermodynamic  sys tem satisfying the boundary conditions, the transit ion laws,  and the 
conservation laws, as well as by the second law of thermodynamics ,  the state with the minimum entropy p r o -  
duction is real ized.  

The proposed formulation makes the principle of minimum entropy production more  interesting: If one 
feasible s tat ionary state is p resen t ,  it is obviously not always necessa ry  to know additional special  features 
of this state. By such a formulation the principle of minimum entropy production obviously assumes  the 
meaning of the principle of the maximally possible conservation of the s t ructure  of the thermodynamic sys tem 
in a nonequilibrium state which distinguishes it f rom other pr inciples ,  for example,  the Gyarmati  principle 
[15] or the evolution cr i te r ia  [16]. Finally,  in the proposed formulation the conditions under which the p r inc i -  
ple of minimum entropy production can be subjected either to inductive verification or can be based on one or  
another s tandard (of course ,  if this is true at all) are  discussed.  
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N O T A T I O N  

are the filling probabil i t ies;  
is the number of molecules  per  unit volume; 
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the number of molecules; 
the temperature; 
the mean velocity; 
the area; 
the radius; 
the energy; 
the entropy production; 
the thickness of heat-conducting layer; 
the heat flux; 
the thermal-conductivity coefficient; 
the hag-angle at wedge vertex; 
the inclination angle of shock wave; 
the entropy change for unit mass of gas in shock wave; 
the mass flow; 
the incoming flow velocity; 

are the flow velocities of downstream shock wave; 
is the ratio of heat capacities. 
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